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Abstract

We present a Fourier-spectral element approach for modeling thermal convection in a rotating axisymmetric

container. Following the theory detailed in Bernardi et al. [C. Bernardi, M. Dauge, Y. Maday, Spectral Methods for

Axisymmetric Domains, Gauthier-Villars, Paris, 1999], a Fourier expansion of the field variables is performed in

the periodic direction, and the resulting collection of meridional problems is discretized by means of a parallel spectral

element method. A Gauss–Lobatto–Jacobi (0,1) quadrature, which incorporates the cylindrical radius in its weight, is

introduced to avoid a potential degeneracy of the discrete set of equations, due to those nodes located on the axis of

symmetry. A second-order timestepping scheme is presented, which treats the Coriolis and viscous forces implicitly.

Numerical comparisons with analytical and published numerical solutions in spherical and cylindrical geometries are

presented which highlight the accuracy of the model and demonstrate its spectral convergence properties.
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1. Introduction

Large-scale planetary fluid flows are strongly influenced by the background rotation of planetary bodies.

On Earth, the effects of the Coriolis force in the atmosphere and in the oceans are observed (and monitored)

on an hourly basis. At the same time, geological records of the magnetic field of the Earth (generated inside
its liquid iron outer core through dynamo action) indicate that the geomagnetic field is on average parallel

(or anti-parallel) to the North–South axis [1]. Each terrestrial fluid layer is therefore very sensitive on its

own timescales to the Earth�s rotation x. This reflects the importance of the so-called geostrophic equilib-

rium, in which the Coriolis force 2qx · u (where q and u are the fluid density and velocity, respectively) is

balanced by the pressure gradient $p:
2qx� u ¼ �rp: ð1Þ
Taking the curl of this balance leads to
2xðẑr � u� ozuÞ ¼
1

q
rq�rp; ð2Þ
where ẑ is the unit vector in the direction of rotation ðx ¼ xẑÞ. Throughout this paper, (x,y,z), (s,/,z), and
(r,h,/) will denote Cartesian, cylindrical, and spherical coordinates, respectively.

If we further assume that the fluid has a constant density q = q0, we obtain the so-called Taylor–Proud-

man theorem
ozu ¼ 0: ð3Þ

This theorem implies that a fast rotation introduces a substantial amount of anisotropy in the flow,

which tends to be invariant along the direction of rotation; the flow is organized in a columnar fashion,

the columns being parallel to the z-axis.

Deviations from a geostrophic state arise from the (re)introduction of other dynamical ingredients in the

momentum equation. Viscous forces are for instance required if no-slip boundary conditions are to be ap-

plied. They are responsible for the generation of sharp Edmon boundary layers, in which there is a local
equilibrium between the Coriolis force, the pressure gradient and the viscous force. Moreover, inertia in-

duces the existence of a class of fast oscillations called inertial waves, the frequency of which is smaller than

2x [2]. A departure from a geostrophic equilibrium can also occur when a large enough body force is ap-

plied to the fluid. For instance, thermal heterogeneities in a viscous fluid can drive non-geostrophic motion.

In a classical paper, Busse [3] showed that thermal instabilities in a sphere took the form of a drifting se-

quence of narrow columns parallel to the axis of rotation. In particular, he demonstrated that the critical

longitudinal wave number kc characterizing this ‘‘banana belt’’ instability varies in the rapidly rotating limit

as x1/3: the larger the rotation rate, the smaller the equatorial extent of the so-called Busse columns. On a
similar note, in the case of metallic planetary cores, this body force can be the Lorentz force, the feedback

from the magnetic field on the fluid flow. The balance between Coriolis force, pressure force, and the

Lorentz force is called the magnetostrophic balance [4].

Having in mind on the long run to design a model able to simulate flows in planetary cores, our objective

in this paper is to present a numerical formulation to solve thermal convection for a non-magnetic viscous

fluid, in the framework of the Boussinesq approximation and in the rapidly rotating limit. We present for

the time the application of a Fourier-spectral element approximation of the relevant equations, in conjunc-

tion with a timemarching scheme that treats the effects of rotation implicitly. This work represents the first
implementation of the theoretical foundations laid by Bernardi et al. [5] to nonlinear problems relevant for

such geophysical flows.

Because of its relevance for planetary and stellar studies, this problem has received considerable atten-

tion from modelers over the past thirty years. The most successful attempts for numerical simulations of
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geophysical flows in rotating spherical shells to date are based upon spectral transform methods (STM)

which expand the variables of interest on the two-sphere upon the global basis of spherical harmonics,

while Chebyshev collocation or finite-differences are generally used in radius [6–10]. Time integration is per-

formed in spectral space using a Courant limited numerical time step, and nonlinear terms are computed at

each time step by transforming functions back into grid space (typically a latitude–longitude structured
grid), in which nonlinear products are computed. A large body of work has grown, addressing the problem

of efficient and stable computation of scalar spherical harmonic transforms [11–13], as well as of harmonic

transforms for vector and tensor fields on the two-sphere [14,15]. However, STM still suffer from some

drawbacks. In particular, they are restricted to spherical geometry. Aspherical geometrical features can

be introduced only through a perturbative approach (assuming therefore a small deviation from sphericity)

or an involved coordinate transform – to model for instance flows in spheroidal shells [16]. Moreover, in the

rapidly rotating limit, the implicit treatment of the Coriolis force, which allows to control inertial waves,

couples spherical harmonics coefficients and has a severe impact on memory requirements [9]. Finally, in
order to reach high resolution, parallel processing is necessary, the efficiency of which is penalized by com-

munication overheads.

This last issue arises from the fact that spherical harmonics are tensor products of combinations of Fourier

series in longitude with associated Legendre functions in latitude. Despite recent improvements, no fast dis-

crete spherical transform exists and the transform requires OðL3Þ operations [17], if L denotes the largest

spherical harmonic degree. This corresponds to a computational effort ofOðL4Þ in three dimensions, assuming

that roughly the same resolution is adopted in the vertical direction as on the two-sphere. At high resolution,

the transforms become the main part of the computations – more than 80% of the total CPU in Kuang and
Bloxham�s three-dimensional (3D) dynamomodel [7]. On distributedmemory architectures, the global nature

of the STM imposes overhead in the communications between processors that becomes critical asL increases.

We should mention, however, a recent and successful effort by Clune et al. [18] who developed a highly effi-

cient parallel implementation on the CRAY T3E of a STM code originally written by Glatzmaier [6].

Aside from STM approaches, a growing number of studies have been conducted toward grid-based

numerical methods in spherical geometries. Most of them are based upon finite differences (FD) [19,20]

or pseudo-spectral [21] methods formulated in cylindrical or spherical coordinates. FD methods are penal-

ized by grid dispersion near strong gradients and require a large number of grid points to achieve the ex-
pected accuracy. Higher-order methods, like pseudo-spectral methods, are able to reach the expected

accuracy using fewer grid points [22]. The major problem of these methods is that they fail to provide a

uniform representation of scalar functions on the two-sphere. Latitude–longitude grids are indeed highly

non-isotropic with a clustering of points near the poles that leads to severe timestep restrictions [23, Section

18.10]. These methods have nevertheless some advantages, not only in terms of storage and periodicity, but

also in terms of efficient calculation of spatial derivatives on the two-sphere that take advantage of the

structure of a latitude–longitude grid. One such approach, previously proposed by Merilees [24], which uses

fast Fourier transforms (FFT) on circles on the sphere, has been recently revisited [21,25] and shown to be
quite accurate when used in conjunction with suitable spectral filters [26,27]. It has been applied to the shal-

low water equations, and remains to be explored in the context of planetary cores dynamics, for which the

thin shell approximation is no longer valid.

Other promising grid-based methods stem from the variational formulation of the momentum and en-

ergy equations and include the finite element method (FEM) and the spectral element method (SEM), using

spherical geodesic grids generated either from the tiling of an icosahedron [28–31] or a gnomic projection –

the so-called ‘‘cubed sphere’’ [32–35]. The 3D mesh of a spherical shell is obtained by radially connecting

the quadrangles between two concentric cubed spheres. The discretization of a whole sphere can then be
completed if needed by inscribing a cube at the center with a smooth transition [36]. Such a discretization

provides a uniform tilling of the two-sphere avoiding classical pole problems of spherical and cylindrical

coordinates and the singularity at the center of the sphere is naturally removed.
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The SEM is specifically quite appealing: it has now become customary to highlight that it combines the

geometrical flexibility of conventional finite element methods with the exponential convergence rate asso-

ciated with spectral techniques [37]. Efficient parallelization can be achieved on distributed memory archi-

tecture and excellent scalings have been measured as far as explicit time schemes are involved [38]. The

SEM yields a OðneNdþ1Þ complexity, where ne is the number of elements, N refers here to the polynomial
degree used in each direction inside each element, and d is the number of spatial dimensions. Since the ratio

of the number of elements ne to N can be controlled, N is generally much smaller than the maximum degree

L of spherical harmonics in STM models and the cost of the transforms is kept in line with the rest of the

model. The SEM has the disadvantage, though, that it gives rise to linear operators which are difficult to

invert if one uses semi-implicit or fully implicit schemes (essential in the rapidly rotating limit). This state-

ment is particularly relevant for the elliptic operator that must be inverted to compute the pressure incre-

ment in pressure correction schemes. Iterative methods with efficient preconditioners are required that

permit an efficient parallel implementation. This is not a trivial task, especially in three dimensions [39].
The purpose of this paper is to introduce and validate an efficient and accurate implicit spectral element-

based method to simulate convection in rotating spherical or ellipsoidal geometries. In order to keep the

numerical complexity of the problem as low as possible, we set the problem in cylindrical coordinates

(the set of coordinates naturally associated with the Taylor–Proudman theorem) and make use of the 2p
natural periodicity in longitude for spherical and ellipsoidal geometries, by expanding the physical variables

in Fourier series in /. This leads to K + 1 coupled two-dimensional problems written in the meridional

plane, where K is the highest Fourier angular mode retained in the expansion. These problems are coupled

only through the nonlinear terms, while no extra coupling arises from the linear rotation (Coriolis) term,
since the axis of rotation does coincide with the z-axis of the cylindrical coordinates set. This method, here-

after referred to as the Fourier-spectral element method (FSEM), provides substantial simplifications in

terms of implementation and mesh design, thanks to the dimension reduction and the elimination of the

angular curvature. Let us stress here that the methodology presented in this paper is valid for any kind

of 3D domain with axial symmetry.

A brief description of the governing equations in the 3D domain is provided in Section 2. In Section 3,

we reformulate the problem in cylindrical coordinates and reduce its dimension by performing a Fourier

expansion in longitude, which gives rise to a collection of problems to solve in the meridional plane. In Sec-
tion 4, the variational formulation of each problem is given and the requirements that fields have to meet on

the axis of symmetry are reviewed. In Section 5, we describe the extensions required for the standard SEM

to handle both the Fourier discretization with respect to the angular variable (longitude) and the weighted

measure due to the cylindrical coordinates system; we resort to a Gauss–Lobatto–Jacobi (0,1) quadrature in

the direction orthogonal to the axis of symmetry for elements that touch this axis. Furthermore, velocity

and pressure are approximated by means of a PN � PN� 2 approach. Section 6 describes in detail the time

discretization and the fractional step method used to advance the model in time. In particular, as advocated

by Perot [40], the splitting is done at the algebraic level, and, thanks to the PN � PN� 2 approach, any
reference to boundary conditions for pressure is bypassed, thereby avoiding the possible generation of

divergence boundary layers. Finally, in Section 7, we present two sets of numerical comparisons with ana-

lytical and/or numerical solutions in spherical or cylindrical geometries, which highlight the accuracy and

the spectral convergence properties of the FSEM. We end the paper with some concluding remarks and

perspectives, and provide in the appendix details on the removal of the apparent axial singularities.
2. Governing equations

Consider a homogeneous Newtonian convecting fluid of density q, kinematic viscosity m and thermal dif-

fusivity j, embedded in an axially symmetric container �X which can be rotating about its axis of symmetry
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at constant angular velocity x (see Fig. 1). Let ẑ denote the unit vector in the direction of rotation. We

assume that motion is driven by thermal anomalies only and choose the following length and time scales:
Fig. 1.

about

are de
½L� � a; ½t� � a2=m; ð4Þ

in which a is a typical dimension of the container. Accordingly, m/a and qm2/a2 are the velocity and pressure

scales.

In the framework of the Boussinesq approximation [41], the nondimensional conservations of mass,

momentum and energy write respectively
r � u ¼ 0; ð5aÞ

otuþ u � ruþ 2Cẑ� uþrP ¼ r2uþ fðT Þ; ð5bÞ

otT þ u � rT ¼ 1

Pr
r2T � u � rT s; ð5cÞ
where u is the fluid velocity, P is the pressure perturbation, T is the temperature anomaly, and Ts is the

static (conductive) temperature distribution. We assume that this set of equations is supplemented by suit-

able initial conditions and by homogeneous Dirichlet boundary conditions for velocity and temperature

anomaly on the boundary of the container o�X. These correspond physically to no-slip conditions for fluid
flow and an imposed temperature on o�X. Note that the implementation of stress-free and thermally insu-

lating boundary conditions require only slight modifications of the implementation described in what

follows.

The Coriolis number
C ¼ a2x
m

ð6Þ
expresses the relative importance of rotational versus viscous effects. It is the inverse of the Ekman number
Ek ¼ m
a2x

; ð7Þ
the use of which is more frequent in geophysical fluid dynamics [2]. The rapidly rotating limit corresponds

to C � 1, or equivalently, Ek � 1.
The explicit expression of f in Eq. (5b) depends on the problem of interest. It is typically of the form
fðT Þ ¼ �RT ĝ; ð8Þ
The three-dimensional domain �X (in this example an oblate spheroid) is axially symmetric about the axis C and can rotate

this axis at a rate x. We denote the meridional section of �X with X, and its meridional boundary with oX. Cylindrical coordinates
noted with (s,/,z), with the z-axis aligned with the axis of symmetry.
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in which ĝ is the unit vector parallel to the gravity field and R is the (nondimensional) Rayleigh number.

The Rayleigh number is a measure of the vigor of convection and its expression depends on the physical

properties of the fluid of interest (thermal diffusivity, coefficient of thermal expansion, kinematic viscosity),

on the strength of gravity, and on the thermal scale chosen. This thermal scale is related to the basic (con-

ductive) thermal state Ts which depends in turn on the thermal boundary conditions, and on the presence of
internal heat sources hs. For the sake of clarity, we will ignore these subtleties throughout the discussion of

the numerical method. We shall, however, provide an explicit expression for f(T) and R when dealing with

the rotating convection example of Section 7.

Finally, Pr in Eq. (5c) is the Prandtl number
Pr ¼ m
j
; ð9Þ
the ratio of viscous diffusivity to thermal diffusivity.
3. Strong cylindrical form – problem reduction by a Fourier expansion in longitude

The axisymmetry of �X, as well as the Proudman–Taylor theorem (3) in the rapidly rotating situation,

favors the use of a (s,/,z) system of cylindrical coordinates (see Fig. 1). The dependence in / can then

be accounted for through a Fourier expansion, which breaks the original three-dimensional problem in

a collection of two-dimensional ones.

If (us,u/,uz) denote the three cylindrical components of velocity, then set (5a) can be written as
osus þ
1

s
us þ

1

s
o/u/ þ ozuz ¼ 0; ð10aÞ

otus � 2Cu/ þ osP ¼ r2us �
us
s2

� 2

s2
o/u/ þ bs; ð10bÞ

otu/ þ 2Cus þ
o/P
s

¼ r2u/ �
u/
s2

þ 2

s2
o/us þ b/; ð10cÞ

otuz þ ozP ¼ r2uz þ bz; ð10dÞ

otT ¼ 1

Pr
r2T þ bT ; ð10eÞ
in which
bs ¼ fs � usosus þ
u/
s
o/us þ uzozus �

u2/
s

 !
; ð11Þ

b/ ¼ f/ � usosu/ þ
u/
s
o/u/ þ uzozu/ þ

usu/
s

� �
; ð12Þ

bz ¼ fz � usosuz þ
u/
s
o/uz þ uzozuz

� �
; ð13Þ

bT ¼ � usos þ
u/
s
o/ þ uzoz

� �
ðT þ T sÞ: ð14Þ
The expression of the scalar Laplacian operator $2 in cylindrical coordinates is
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r2 ¼ o2s þ
1

s
os þ

1

s2
o2/ þ o2z : ð15Þ
We now perform a Fourier expansion of the field variables in the longitudinal direction
u; P ; T ; bT ; bf g ¼
Xk¼þ1

k¼�1
~uk; ~P

k
; ~T

k
; ~b

k

T ;
~b
k

n o
eik/: ð16Þ
This expansion, when inserted in problem (10), leads to a series of meridional problems Pk to solve in X
for each Fourier mode k
os~u
k
s þ

1

s
~uks þ

ik
s
~uk/ þ oz~u

k
z ¼ 0; ð17aÞ

ot~u
k
s � 2C~uk/ þ os~P

k ¼ r2
k~u

k
s �

1

s2
~uks �

2ik
s2

~uk/ þ ~b
k

s ; ð17bÞ

ot~u
k
/ þ 2C~uks þ

ik
s
~P
k ¼ r2

k~u
k
/ � 1

s2
~uk/ þ

2ik
s2

~uks þ ~b
k

/; ð17cÞ

ot~u
k
z þ oz~P

k ¼ r2
k~u

k
z þ ~b

k

z ; ð17dÞ

ot~T
k ¼ 1

Pr
r2

k
~T
k þ ~b

k

T : ð17eÞ
The scalar Laplacian r2
k is a function of k:
r2
k ¼ o2s þ

1

s
os �

k2

s2
þ o2z : ð18Þ
Introducing
rk ¼
os
ik
s

oz

2
64

3
75; rk� ¼ os þ

1

s
;
ik
s
; oz

� �
; Dk ¼

r2
k � 1

s2 � 2ik
s2 0

2ik
s2 r2

k � 1
s2 0

0 0 r2
k

2
64

3
75;
problem Pk can be written in the more compact form:
rk � ~uk ¼ 0; ð19aÞ

ot~u
k þ 2Cẑ� ~uk þrk

~P
k ¼ Dk~u

k þ ~b
k
; ð19bÞ

ot~T
k ¼ 1

Pr
r2

k
~T
k þ ~b

k

T : ð19cÞ
As the fields sought are real, each field (for instance the pressure ~P
k
) satisfies by construction the follow-

ing symmetry in Fourier space
~P
k ¼ ~P

�k
; ð20Þ
where the overbar denotes complex conjugate. Consequently, the previous system has to be solved for pos-

itive k only. We will restrict our study to nonnegative k in the remainder of this paper.

The meridional boundary conditions that ð~uks ; ~uk/; ~ukzÞ and ~T
k
must satisfy on oX stem directly from the

three-dimensional ones. In particular, if we assume that u = 0 and T = 0 on o�X, we require that for all k
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~uk ¼ 0 on oX; ð21Þ

~T
k ¼ 0 on oX: ð22Þ
4. Cylindrical weak form and axial conditions

The singularity of the cylindrical coordinate system imposes extra conditions to be met by the unknown

fields on the axis. The determination of these axial conditions has been addressed by several authors in the

past (see e.g. [42,23,43], and references therein). For the specific purpose of deriving the variational formu-

lation associated with Pk, we rely on the recent work by Lopez et al. [43] and Bernardi et al. [5] and intro-

duce the distinction between essential and natural axial conditions. The latter will be automatically satisfied

through the variational formulation, while the former have to be enforced for the variational problem to be

well-posed. To derive the weak formulation, we follow [5] and define the inner product (Æ,Æ)1 over the merid-

ional domain X
f ; gð Þ1 ¼
Z
X

�f g dX; ð23Þ
in which dX = 2ps ds dz. We will omit the 2p factor in the remainder of this paper without loss of gener-

ality. At this stage, it is necessary to introduce the space L2
1ðXÞ of functions w such that
kwk21 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw;wÞ1

q
< þ1: ð24Þ
The weighted Sobolev space H 1
1 contains functions in L2

1ðXÞ whose first order partial derivatives are also
in L2

1ðXÞ.

H 1

1ðXÞ ¼ w 2 L2
1ðXÞ; osw 2 L2

1ðXÞ; ozw 2 L2
1ðXÞ

� �
: ð25Þ
Similarly,H1
1ðXÞ is the space of vector fields whose cylindrical components are in H 1

1ðXÞ. We introduce as

well
H 1
1� ¼ w 2 H 1

1ðXÞ;w ¼ 0 on oX
� �

: ð26Þ
After dotting Eq. (19b) with a function w inH1
1ðXÞ, and integrating over X, one can show that within this

cylindrical framework, the gradient form ak writes
akðw; ~ukÞ ¼ a0ðws; ~u
k
sÞ þ a0ðw/; ~u

k
/Þ þ a0ðwz; ~u

k
z Þ þ

ws

s
;
ð1þ k2Þ~uks þ 2ik~uk/

s

 !
1

þ w/

s
;
ð1þ k2Þ~uk/ � 2ik~uks

s

 !
1

þ wz

s
;
k2~ukz
s

� 	
1

; ð27Þ
where
a0ðw; vÞ ¼ osw; osvð Þ1 þ ozw; ozvð Þ1: ð28Þ

As pointed out in [43], the essential axial conditions are the ones that ensure that the integrals involved in

definition (27) remain finite. In other words, we have to make sure that the following conditions hold on C
(where s = 0):
if k ¼ 0; ~uk ¼ ~uk ¼ 0; ð29aÞ
s /
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if k ¼ 1; ~uks þ ik~uk/ ¼ ~ukz ¼ 0; ð29bÞ

if k > 1; ~uks ¼ ~uk/ ¼ ~ukz ¼ 0: ð29cÞ
Likewise, the scalar fields ~P
k
and ~T

k
must behave like ~ukz . Notice that condition (29b) for k = 1 allows for

material flow through C. By performing a Taylor expansion of the field variables in the neighbourhood of

C, one can show more generally that the behaviour of the velocity components next to the axis is as follows

([42], and references therein):
~uks / ask�1; ð30Þ

~uk/ / iask�1; ð31Þ

~ukz / bsk: ð32Þ

Consequently, as shown in a slightly different form in [43] and detailed in [5], the meridional fields are

expected to satisfy a series of natural axial conditions which write
oms ~u
k
s ¼ 0; m ¼ 1; . . . ; k � 2; k P 3; ð33Þ

o
m
s ~u

k
/ ¼ 0; m ¼ 1; . . . ; k � 2; k P 3; ð34Þ

o
m
s ~u

k
z ¼ 0; m ¼ 1; . . . ; k � 1; k P 2: ð35Þ
These conditions are automatically met upon discretization of the variational formulation and we do not

enforce them. On the other hand, the essential conditions (29) make it necessary to introduce yet another

subspace V 1
1�ðXÞ of H 1

1�ðXÞ such that
V 1
1�ðXÞ ¼ w 2 H 1

1�ðXÞ; w ¼ 0 on C
� �

: ð36Þ
The space of suitable velocities (resp. temperatures) Hk
1�ðXÞ (resp. Hk

1�ðXÞ) for a given Fourier mode k is

then given by [5]
Hk
1�ðXÞ ¼

V 1
1�ðXÞ � V 1

1�ðXÞ � H 1
1�ðXÞ if k ¼ 0;

ð~uks ; ~uk/; ~ukz Þ 2 H 1
1�ðXÞ � H 1

1�ðXÞ � V 1
1�ðXÞ; ~uks þ ik~uk/ ¼ 0 on C

n o
if k ¼ 1;

V 1
1�ðXÞ � V 1

1�ðXÞ � V 1
1�ðXÞ if k P 2;

8>><
>>: ð37Þ

Hk
1�ðXÞ ¼

H 1
1�ðXÞ if k ¼ 0;

V 1
1�ðXÞ if k P 1:

(
ð38Þ
We can now write the variational formulation Wk equivalent to problem Pk 8k P 0, find ~uk; ~P
k
; ~T

k
in

Hk
1�ðXÞ � L2

1ðXÞ � Hk
1�ðXÞ, such that
8q 2 L2
1ðXÞ; �dkð~uk; qÞ ¼ 0; ð39aÞ

8w 2 Hk
1�ðXÞ; ðw; ot~ukÞ1 þ 2Ccðw; ~ukÞ � dkðw; ~P

kÞ þ akðw; ~ukÞ ¼ ðw; ~bkÞ1; ð39bÞ

8v 2 Hk
1�ðXÞ; ðv; ot~T

kÞ1 þ
1

Pr
akðv; ~T

kÞ ¼ ðv; ~bkT Þ1: ð39cÞ
Apart from akðw; ~ukÞ which we already explicited, the forms that appear here are the pressure-divergence

form



A. Fournier et al. / Journal of Computational Physics 204 (2005) 462–489 471
dkð~u; qÞ ¼ os~u
k
s þ

1

s
~uks þ

ik
s
~uk/ þ oz~u

k
z ; q

� 	
1

; ð40Þ
the cylindrical Coriolis form
cðw; ~ukÞ ¼ � ws; ~u
k
/

� �
1
þ w/; ~u

k
s


 �
1
; ð41Þ
and the scalar gradient form
akðv; ~T
kÞ ¼ a0ðv; ~T

kÞ þ k2
v
s
;
~T
k

s

 !
1

: ð42Þ
In their book, Bernardi et al. [5] provide a comprehensive theoretical analysis of this problem, and give in

particular the properties of the forms ak(Æ,Æ) and dk(Æ,Æ). For our practical purposes, let us emphasize that the

crucial point is to approximate pressure and velocity in compatible discrete spaces. The spatial discretiza-
tion is the topic of the next section.
5. Spatial discretization

5.1. Truncation of Fourier expansion

First of all, the Fourier expansions (16) are truncated to a maximum order K.
u; P ; T ; bT ; bf g ¼
Xk¼þK

k¼�K

~uk; ~P
k
; ~T

k
; ~b

k

T ;
~b
k

n o
eik/; ð43Þ
which, given the symmetry in complex space, leaves us with K + 1 meridional problems to solve.

5.2. Spectral element discretization of the meridional problems

For each Fourier mode k in {0,..,K}, each functional space Hk
1�ðXÞ, L2

1ðXÞ, Hk
1�ðXÞ involved in Wk has to

be approximated by a finite dimensional space Xk
h�ðXÞ, YhðXÞ, Xh�ðXÞ, respectively. We described in detail

the spatial discretization of W0 and spaces X0
h�ðXÞ and YðXÞ in a previous paper dealing with the axisym-

metric Navier–Stokes equation in a rotating frame [44]. In [44], after decomposing the meridional domain

in a collection of spectral elements Xe, we expanded the field variables upon elemental tensorized bases of

Lagrangian interpolants defined over the family of Gauss–Lobatto–Legendre (GLL) quadrature points.

Exception was made for elements sharing an edge with C (termed axial elements): in this case, a Gauss–

Lobatto–Jacobi (0,1) (GLJ01) quadrature, which incorporates the cylindrical radius in the weight, was used

in the direction orthogonal to C (it was incorrectly referred to as a weighted Gauss–Lobatto–Legendre

formula). For a general description of Gauss–Lobatto–Jacobi interpolation and quadrature, the reader

is referred to appendices A and B of the treatise by Karniadakis and Sherwin [45].
The extra non-axisymmetric discrete spaces we are interested in here are the complexified extension of

these real spaces, with the distinction that different axial conditions (29) have to be enforced depending

on the wavenumber k. This is done in practice by means of a mode-dependent mask array.
5.2.1. Tiling of the meridional domain

We now provide the essential details of the meridional discretization. First of all, as illustrated in Fig. 2,

the global domain X is decomposed into a collection of ne non-overlapping elements Xe, such that:



Fig. 2. Tiling of our companion meridional domain in a collection of ne = 6 non-overlapping elements. Each element e is the image of a

reference square (called the parent element) under an invertible mapping Fe.
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�X ¼
[ne
e¼1

Xe: ð44Þ
Here, each Xe is the image of a reference square K2 = [�1, +1]2 under a local invertible mapping

Fe : ðn; gÞ 2 K2 ) ðs; zÞ 2 Xe with a well-defined inverse. In our current code, the mapping can be either

analytical or sub-parametric, depending on the complexity of X. A parametric mapping is termed sub-par-
ametric if a lower order is used to map coordinates as compared to the dependent variables, see e.g. [45]. In

the case of an axial element, our conventions are such that the direction normal to C corresponds to the n
direction in the parent element.

5.2.2. Discrete functional spaces and quadratures

In each spectral element Xe, velocity, pressure and temperature are approximated locally by means of

tensorized polynomials. To avoid spurious pressure modes, Bernardi and Maday [46] suggested to discretize

velocity and pressure by polynomials of different order, in the following spaces
Xk
h� ¼ Hk

1�ðXÞ \ PN ;ne ; ð45Þ

Yh ¼ L2
1ðXÞ \ PN�2;ne ; ð46Þ
where
PN ;ne ¼ wðFeðn; gÞÞjXe
2 PN ðnÞ � PNðgÞ; e ¼ 1; ne

� �
ð47Þ
and
PN ;ne ¼ PN ;ne � PN ;ne � PN ;ne : ð48Þ

Here, PN is the space of those polynomials defined over [�1,1] of degree less or equal to N. It can been

shown that the lower degree used to discretize pressure in this so-called PN � PN� 2 approach provides a
unique solution to the problem of interest [47].

Likewise, to discretize the temperature field, we choose
Xk
h� ¼ Hk

1�ðXÞ \ PN ;ne : ð49Þ

We follow a Galerkin approach and choose velocity and temperature trial functions in the same spaces.

Each integral involved in Wk is broken into a sum of elemental integrals which are in turn computed in the

reference square K2. For instance, the integral of an arbitrary function g over X is written as
Z
X
gðs; zÞs ds dz ¼

Xne Z
X
gðs; zÞs ds dz ¼

Xne Z
K2

gðFeðn; gÞÞseðn; gÞjJejðn; gÞdn dg; ð50Þ

e¼1 e e¼1
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where jJej is the Jacobian of the mapping. From there, the procedure we apply to compute each elemental

integral is standard, and is described in detail in [44].

If Xe is not axial, variables are expanded on Gauss–Lobatto–Legendre (GLL) Lagrangian interpolants,

in conjunction with a GLL quadrature formula of order N, the nodes and weights of which we denote by ni
and qi, respectively. Pressure is expanded on the Lagrangian interpolants defined by the inner GLL nodes
only. If Xe is axial, GLJ01 Lagrangian bases are used in the direction orthogonal to C (n in our conven-

tions), along with a GLJ01 quadrature, the nodes and weights of which we now denote by fi and ri, respec-
tively. GLL bases and quadrature are used in the g-direction. A description of GLL and GLJ01

quadratures can be found in [5, chapter 4] and [45, Appendices A and B]. Pressure is expanded on the

Lagrangian bases defined by the tensorization of the inner GLJ01 nodes in the n direction with the inner

GLL nodes in the g direction.

An example of a meridional mesh is shown in Fig. 3. Each elemental subgrid contains (N + 1)2 degrees of

freedom for each cylindrical component of velocity and for temperature, and (N � 1)2 pressure degrees of
freedom. There exists grid points on C, which is crucial in order to enforce the essential axial conditions

(29a).

5.2.3. Implementation – boundary and axial conditions

As pointed out by Deville et al. [48], the use of Lagrangian bases enables one to enforce the continuity of

the velocity and temperature fields simply by equating coincident nodal values (in the geometrically con-

forming case). This is practically done by introducing the connectivity matrix Q which maps a global field
Fig. 3. Meridional SEM grid, comprising 6 elements of polynomial order 10. Aside from the standard clustering of grid points near the

elements edges, note the asymmetry in the positions of grid points in the s direction for elements in contact with C. This follows from
the application of the Gauss–Lobatto–Jacobi quadrature (0,1) rule in this direction.
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F into a collection of local (elemental) fields Fe. Its transposed, QT is used to sum up values for interfaces

nodes, leaving the interior values unchanged, see e.g. [48, Section 4.5.1].

In practice, data are stored locally and most of the operations are done at a local level. In particular, our

implementation permits the decomposition of the meridional domain X in subdomains (containing a small

number of spectral elements), which can be assigned to different processors. We retained this strategy as
opposed to distributing the various k = 0, 1, 2, . . ., K meridional problems among different processors in

order to get a work load as equally balanced as possible between processors. Tomboulides [42] assigned

one meridional problem to each processor and he observed in his calculations that the axisymmetric solves

were substantially more time consuming than the non-axisymmetric ones, which resulted in an important

latency.

As an example, let us pick two fields in H 1
1ðXÞ, v and w, and see how their inner product is implemented.

Let V and W be the global vectors of their nodal values and let V e
ij and W e

ij denote their nodal values at

node (i,j) inside each element Xe. Their inner product (Æ,Æ)1 writes
ðv;wÞ1 ¼
Z
X

�vws ds dz ¼
Xne
e¼1

Z
Xe

�vws ds dz ¼
Xne
e¼1

ð�V eÞTMeW e; ð51Þ

or; equivalently;¼ �V TQTMQW : ð52Þ

in which M is the block-diagonal mass matrix comprising local (diagonal) mass matrices Me
Me
iji0j0 ¼ dii0djj0 �

riqj
seij

1þfi
jJe

ijj if Xe is axial;

qiqjs
e
ijjJ

e
ijj otherwise;

(
ð53Þ
where seij ¼ seðFeðni; njÞÞ (resp. seðFeðfi; njÞzÞ) and jJe
ijj ¼ jJejðFeðni; njÞÞ (resp. jJe

ijj ¼ jJejðFeðfi; njÞÞ) in
the non-axial (resp. axial) case. The assembled matrix QTMQ is never formed as such. Instead, its action on

a vector is computed at the elemental level and the operation QQT, referred to as the direct stiffness sum-

mation [49,48], is performed to obtain ultimately a local field of elemental nodal variables. In the case of a

parallel calculation, applying QQT requires inter-processors communications. These are handled according

to the message passing paradigm [50].
As an aside, note that the apparent singularity in the expression of the mass matrix in the axial case for

f0 = �1 (or equivalently when s = 0) can be removed by application of L�Hospital rule.

Dirichlet and essential axial boundary conditions are enforced at the elemental level by means of a mask

array, which acts on the three components of velocity as well as on temperature. It depends in each case on

the Fourier mode considered. This mask array is essentially a diagonal matrix of coefficient one everywhere,

save for these nodes which belong to Xe \ oX (and depending on the value of k, on Xe \ C) , in which case

the entry is zero. The mask Te
k applied to the temperature field is always diagonal. The only case for which

the velocity mask Ve
k is not diagonal corresponds to k = 1, for which the condition ~u1s þ ik[1 ¼ 0 has to be

enforced on C.
For instance, enforcing the boundary and axial conditions for temperature requires to replace Me by

Te
kM

eTe
k in (51), or, equivalently, if Tk denotes the block diagonal matrix made of elementary bricks

Te
k, M by TkMTk in (52). The same logic applies to the other matrices involved the semi-discrete form

of Wk.
5.2.4. Semi-discrete problem

Even if most of the operations are done at the elemental level, we will retain for clarity in this paragraph

a global notation: in what follows Uk, Pk, Tk, Bk, and Tk are the vectors of nodal values associated with

velocity, pressure, temperature, and the right-hand side forcing terms.
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The semi-discrete problem writes for a given mode k: Find Uk, Pk, Tk such that
�DkVkQUk ¼ 0; ð54aÞ

Mk
dUk

dt
þ 2CCkU

k �QTVk
T �D

T

k P
k þ KkU

k ¼ QT �V
T

kMBk; ð54bÞ

Mk
dTk

dt
þ 1

Pr
KkT

k ¼ QTTkMTk: ð54cÞ
In this set, Q denotes the vectorial extension of the connectivity matrix and M is the vectorial extension

of the unassembled mass matrix M defined above. Mk ¼ QT �V
T

kMVkQ and Mk ¼ QTTkMTkQ are the

velocity and temperature mass matrices consistent with the boundary conditions. Background rotation ap-

pears through the antisymmetric Coriolis matrix
Ck ¼
0 �Mk 0

Mk 0 0

0 0 0

2
64

3
75; ð55Þ
Dk is the (rectangular) divergence matrix and �D
T

k is the associated gradient matrix. The scalar stiffness

matrix Kk is given by QTTkKB
kTkQ in which KB

k is the block matrix comprising the elemental stiffness

matrices Ke
k. The vectorial stiffness matrix Kk is likewise given by QT �V

T

kK
B
kVkQ, where, again, KB

k is the

block matrix built from the elemental bricks Ke
k. We provide extra details on the actual implementation

of Ke
k and Ke

k in Appendix A, and in particular on how the singularity due to forms of the kind ðws ; vs Þ1
in Eqs. (27) and (42) is handled.
6. Temporal discretization

The temporal discretization we apply to Eqs. (54a) relies on earlier SEM studies of the Navier–Stokes

equations [51] and recent SEM oceanic and atmospheric circulations models [52,34,53,38], as well on the
treatise by Deville et al. [48].

The temperature solve is decoupled from the velocity–pressure solve. The coupled velocity–pressure

problem is handled following a consistent decoupling strategy applied at the discrete level, resulting in

an overall second-order temporal accuracy.
6.1. Timemarching

Let Dt be the timestep and Uk
n, P

k
n, T

k
n, B

k
n, and Tk

n denote the values of U
k, Pk, Tk, Bk, and Tk at the dis-

crete time tn = nDt. Time derivatives are approximated by a second-order backward differentiation formula

of order 2 (BDF2), which is unconditionally stable. This gives
dfUk;Tkg
dt

����
nþ1

	 3fUk
nþ1;T

k
nþ1g � 4fUk

n;T
k
ng þ fUk

n�1;T
k
n�1g

2Dt
: ð56Þ
Nonlinear right-hand side forcing terms are approximated by means of a third-order Adams–Bashforth
formula (AB3) [48]:
fBk
nþ1;T

k
nþ1g 	 23

12
fBk

n;T
k
ng �

4

3
fBk

n�1;T
k
n�1g þ

5

12
fBk

n�2;T
k
n�2g: ð57Þ
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In practice, Bk and Tk contain quadratic terms which couple Fourier modes. They are computed in the

physical domain and then transformed back into Fourier space by means of a fast Fourier transform algo-

rithm [54]. As we perform the domain decomposition in the meridional plane, this procedure is local and

does not require inter-processors communications. The explicit AB3 formula causes the timestep to be lim-

ited to a value proportional to the minimum grid spacing h:
Dt < Ch=U ; ð58Þ
in which C is an order 1 constant and U is the maximal pointwise velocity. For an axisymmetric prob-

lem, h is equal to hmed, the minimal grid-spacing in the meridional plane. The clustering of grid points

near elemental boundaries is such that hmed � 1/(ne N
2). For a 3D problem, using the equidistant

Fourier grid in the azimuthal direction, we have observed that h is typically equal to a fraction of hmed,

due to the clustering of points near C. We will address issues related to the pole problem in the
discussion.

The linear viscous and Coriolis operators in Eqs. (54b) and (54c) are treated implicitly, and the pressure

field Pk
nþ1 is written as
Pk
nþ1 ¼ Pk

n þ dPk; ð59Þ
where dPk is the pressure increment to be computed.

After applying these different formulas, one ends up with the following problem to solve at each time

step
AkU
k
nþ1 �QT �V

T

k
�D

T

k dP
k ¼ Fk

nþ1; ð60Þ

�DkVkQUk
nþ1 ¼ 0; ð61Þ

AkT
k
nþ1 ¼ Fk

Tnþ1; ð62Þ
in which Ak is a modified vectorial Helmholtz operator
Ak ¼ aiDt�1Mk þ 2acCCk þ avKk; ð63Þ

in which (ai, ac, av) = (3/2,1,1). The right hand side forcing term writes
Fk
nþ1 ¼ QT �V

T

k ðMBk
nþ1 þ �D

T

k P
k
nÞ þMkDt�1ð2Uk

n �
1

2
Uk

n�1Þ: ð64Þ
The symmetric scalar Helmholtz operator Ak has the form
Ak ¼ aiDt�1Mk þ avPr�1Kk; ð65Þ

and the right hand side forcing term Fk

Tnþ1 writes
Fk
Tnþ1 ¼ QTTkMBk

Tnþ1 þMkDt�1ð2Tk
n � 1

2
Tk

n�1Þ: ð66Þ
6.2. Temperature solve

To obtain the value of the temperature at the next time step, we solve Eq. (62) by means of a diag-

onally preconditioned conjugate gradient (PCG) method. The value of Dt imposed by the stability

requirements (58) resulting from the AB3 formula is indeed typically such that Ak is diagonally domi-

nant. As the quantities involved are complex numbers (except for T0 which is real), the real and imag-

inary parts of Tk
nþ1 are computed independently. This remark applies to the velocity and pressure solves

introduced below.



A. Fournier et al. / Journal of Computational Physics 204 (2005) 462–489 477
6.3. A discrete decoupling scheme for the velocity-pressure subproblem

Turning now our attention to the modified Stokes problem involving velocity and pressure, we note that

its four-dimensional character precludes a direct solve and we follow instead the decoupling strategy ex-

posed by Fischer [51], which was based upon earlier studies by Maday et al. [55] and Couzy [56].
First of all, the so-called inhomogeneity gk is computed, according to
gk ¼ �DkVkQA�1
k Fk

nþ1 ¼ �DkVkQUkH; ð67Þ
where Ukw can be interpreted as a first guess for the kth velocity mode, which does not satisfy the diver-

gence-free constraint. The operator Ak is inverted iteratively, using a preconditioned stabilized biconjugate
gradient method [57] when C 6¼ 0, and a PCG algorithm otherwise. The preconditioner used is the diagonal

of Ak, for the reasons stated above.

The estimate Ukw is then improved through the calculation of the pressure increment dPk, which is ob-

tained after inversion of the pseudo-Laplacian operator Ek:
dPk ¼ E�1
k gk; ð68Þ
where Ek ¼ a�1
i DtDkVkQM�1

k QT �V
T

k
�D

T

k . This symmetric operator is inverted by means of a PCG algorithm.

The preconditioner we use is an adaptation of the overlapping Schwarz technique presented by Fischer [51]

to our cylindrical meridional problems. This refined technique is unavoidable because of the poor condi-

tioning of the pseudo-Laplacian operator, which is defined across the spaces Xk
h� and Yh. We developed this

technique at first in the axisymmetric context [44], for which we typically found a factor of ten reduction in

the iteration count in the pressure increment solve with respect to the non-preconditoned case, resulting in a

threefold decrease in the CPU time cost of the pressure calculation. We observe the same behaviour with

the extension of the preconditioner to non-axisymmetric Fourier modes.

Note also that the pressure operator that follows from the standard Uzawa decoupling is

DkVkQA�1
k QT �V

T

k
�D

T

k , and not the approximated Ek. Applying directly a PCG algorithm to this operator

means inverting (iteratively as well!) the modified Helmholtz operator Ak at each iteration. This approach

is computationally expensive, and the trick due to [55] is to approximate A�1
k by the diagonal a�1

i DtM�1
k

operator. This approximation results in a second-order residual term, which does not deteriorate the overall

second-order accuracy of the scheme [51,44].

Finally, the pressure increment is used to form the final (divergence-free) velocity field at the next time

step
Uk
nþ1 ¼ a�1

i DtM�1
k QT �V

T

k
�D

T

k dP
k þ UkH: ð69Þ
This splitting strategy is similar to classical splitting techniques, such as the fractional step method [58],

save that the splitting is applied on the discrete form of the equations. No additional pressure boundary

conditions need to be prescribed, and no extra temporal error is introduced. It is quite common in the frac-

tional step framework to apply (inconsistent) homogeneous Neumann boundary conditions to solve for
pressure, which tend to create divergence boundary layers located near the domain boundaries

[40,42,48]. At the same time, it is well-known that rapidly rotating fluids embedded in a container with rigid

boundaries create sharp boundary layers that induce a secondary flow in the bulk of the domain, through

an Ekman pumping/suction mechanism [2]. It is therefore necessary to prevent the existence of numerical

boundary layers, even if this implies, through the inversion of Ek, a larger computational cost than the one

due to a fractional step approach. Let us mention, though, that the fractional step method can be improved

through a more accurate representation of the pressure boundary conditions [59,43]. The computational

effort can then be dramatically reduced since a PN � PN approach can be followed for velocity and pres-
sure. This approach leads, however, to an inexact representation of the pressure field, owing to the presence
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of spurious pressure modes. The fact that pressure will certainly be a quantity of interest in future geophysi-

cal applications of our model prompted us to adopt the PN � PN� 2 approach, along with the splitting

scheme described above.
6.4. Initialization of the algorithm

For consistency, the initialization must provide second-order accurate starting values of Uk
n and Tk

n for

n = 1 and 2, as required by the AB3 formula, and a second-order accurate estimate of Pk
2. Starting from the

initial conditions Uk
0 and Tk

0, a second-order Crank–Nicolson formula is applied to every right-hand side

terms of set (54) (including the nonlinear terms). The resulting set is solved iteratively until stationary

ðUk
1;P

k
1;T

k
1Þ are obtained. This procedure is repeated to get ðUk

2;P
k
2;T

k
2Þ from ðUk

1;P
k
1;T

k
1Þ. Several tests

(not shown) indicate that this procedure is indeed second-order accurate.
7. Examples

7.1. Cylindrical Kovasznay flow

As pointed out by Blackburn and Sherwin [60], an analytical solution to the 3D Navier–Stokes equations

in cylindrical geometry can be found from a planar solution when the latter is expressed in cylindrical coor-

dinates. The 2D Navier–Stokes equations (in the absence of background rotation) can be written
oxux þ oyuy ¼ 0; ð70Þ

oux
ot

þ uxoxux þ uyoyux ¼ �oxp þ
1

Re
ðo2x þ o

2
yÞux; ð71Þ

ouy
ot

þ uxoxuy þ uyoyuy ¼ �oyp þ
1

Re
ðo2x þ o

2
yÞuy ; ð72Þ
where (ux,uy) are the Cartesian components of velocity, p is pressure and Re denotes the Reynolds number.

A steady solution to the previous system is the Kovasznay flow [61] defined as
uxðx; yÞ ¼ 1� expðkxÞ cosð2pyÞ; ð73Þ

uyðx; yÞ ¼
k
2p

expðkxÞ sinð2pyÞ; ð74Þ

pðxÞ ¼ 1

2
1� expð2kxÞð Þ; ð75Þ
where k ¼ Re=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2=4þ 4p2

p
. Blackburn and Sherwin [60] suggest to map the previous solution into a

cylindrical coordinates system. The solution becomes fully 3D first by rotating the solution coordinates

about the Cartesian x-axis by an amount a, and by introducing an offset �D of the cylindrical z-axis from

the Cartesian x-axis. The cylindrical solution is then
us ¼
k
2p

expðkzÞ sin 2p½s cosð/þ aÞ þ D�ð Þ cosð/þ aÞ; ð76Þ

u/ ¼ � k
2p

expðkzÞ sin 2p½s cosð/þ aÞ þ D�ð Þ sinð/þ aÞ; ð77Þ
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uz ¼ 1� expðkzÞ cos 2p½s cosð/þ aÞ þ D�ð Þ; ð78Þ

p ¼ 1

2
1� expð2kzÞð Þ: ð79Þ
In the remainder of this paragraph, we follow Blackburn and Sherwin [60] and take Re = 40, D = 0.1 and

a = 0.75, which ensures that flow crosses the axis and that all axial terms are exercised, for real and imag-

inary parts of all non-axisymmetric modes. The meridional domain X is the [0,0.5] · [�0.5,1] rectangle. It is

decomposed into four spectral elements, as illustrated in Fig. 4(a), where the mesh obtained by choosing

N = 11 is displayed. Solutions are computed starting from the exact solution above (hereafter referred to
as ua), and letting the numerical approximation uh evolve in time until it becomes steady. The velocity

boundary conditions prescribed during the evolution correspond to the value of ua on the boundary nodes.

The timestep is set to Dt = 2 · 10�3, which ensures that temporal errors are negligible. The maximum point-

wise deviation is evaluated when steady state is reached, for the three components of velocity. To test the

convergence properties of the PN � PN� 2 spectral element approximation, the truncation K in the Fourier

domain is set to 23. Shown in Fig. 4(b) is the maximum pointwise error for the axial component of velocity,

iuz,h � ua,hi1, as a function of polynomial order N (the results obtained for the equatorial components fol-

low the same trend). The convergence to the exact solution is exponential, and the error reaches the numer-
ical noise for N = 13. For completeness, we show the same type of curve fixing N to 11 and varying the

truncation K in Fig. 4(c): not surprisingly, the convergence in Fourier space is also spectral – the N = 11

spectral element error level is obtained for K = 17.

The spectral convergence of the PN � PN� 2 spectral element approximation is to our knowledge the first

of the kind exposed for a fully nonlinear problem which has flow crossing the axis. In their paper, Black-

burn and Sherwin [60] show a similar behaviour for the same problem, following a PN � PN formulation,

which employs GLL quadrature everywhere. They stress the need for a careful inspection of the right-hand

side terms in the Poisson equation that controls the value of pressure. In particular, they show (Appendix
A) that the negligent use of a Gauss–Lobatto–Jacobi (0,1) quadrature can degrade the convergence from

spectral to algebraic. We do not detect this degradation here, benefiting from the PN � PN� 2 approach

in conjunction with the discrete time splitting described in the previous section.
(a) Spectral element grid used to calculate the cylindrical Kovasznay flow, shown here for N = 11. Note that the 2 elements

ng the axis C resort to a Gauss–Lobatto–Jacobi (0,1) quadrature in the radial direction. (b) Spectral element approximation

gence results for the axial component of velocity (logarithmic scale). The maximum azimuthal wavenumber K is constant and set

23. (c) Fourier approximation convergence results for the axial component of velocity. The polynomial order N is constant and

11.
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7.2. Thermal convection in a rotating spherical shell

Over the past decade, much has been learned on dynamo action through the numerical simulations of

convection-driven magnetohydrodynamic dynamos in rotating spherical shells; see [62–64] for recent re-

views. Recently, in an attempt to increase the confidence in existing codes and to provide a well-established
standard solution for codes being developed, Christensen et al. [10] proposed a numerical dynamo bench-

mark calculation.

The first case of this benchmark is purely hydrodynamic (no magnetic effect at all) and provides an inter-

esting and challenging test for our code. In a spherical shell �X of inner radius ri and outer radius ro, tem-

perature is fixed to To and To + DT on the outer and inner boundaries, respectively. The equations are

scaled with D = ro � ri as the fundamental length scale, which makes the dimensionsless radii equal to

ro = 20/13 and ri = 7/13. The choice of scales is the same as the one exposed in Section 2 and leads to

the following set of dimensionless equations:
r � u ¼ 0; ð80aÞ

Ek otuþ u � ru�r2u

 �

þ 2ẑ� u ¼ �rP þ R
r̂

ro
T ; ð80bÞ

otT þ u � rT ¼ 1

Pr
r2T � u � rT s: ð80cÞ
Non-dimensional control parameters are the (modified) Rayleigh number
R ¼ agoDTD
mx

; ð81Þ
where a is the coefficient of thermal expansivity and go is gravity at the outer radius, and the Ekman and

Prandtl numbers. The values used in the benchmarks are R = 100, Ek = 10�3 (or, equivalently, C = 103),
and Pr = 1. The static, radial temperature profile Ts is given by
T sðrÞ ¼
rori
r

� ri: ð82Þ
Furthermore, no-slip boundary conditions are used and velocity must vanish on the rigid boundaries.

Initial conditions consist of a zero velocity field and of a temperature perturbation of degree and order four:
T ðr; h;/; t ¼ 0Þ ¼ 21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17920p

p ð1� 3x2 þ 3x4 � x6Þsin4h cos 4/; ð83Þ
where x = 2r � ri � ro.
A quasi-stationary solution is reached within approximately 1 time unit, and Christensen et al. [10]

express it by a vector function of the form
ðu; P ; T Þ ¼ f ðr; h;/� xdtÞ; ð84Þ

in which xd is the drift frequency.

The solution is symmetric about the equator and has fourfold symmetry in longitude. Fig. 5 shows two
slices representing the temperature field (left) and the velocity and pressure fields (right) at the equator. As

the solution is symmetric about the equator, results exposed in what follows correspond to FSEM calcu-

lations performed in the upper part of the shell only. Moreover, the fourfold symmetry in longitude leads

to a reduction of the cost of the calculation by another factor of four. Fig. 6 shows an example of a mesh

used to compute this rotating Rayleigh–Bénard flow. It consists of four spectral elements of order 14

coupled with K + 1 = 32 Fourier modes in longitude /. For this problem, nonlinear terms are computed



Fig. 5. Equatorial slices showing the temperature field (left) and the velocity and pressure fields (right) for the rotating convection

calculation. Left: Solid lines and red regions correspond to positive temperature anomalies; dashed lines and blue regions correspond

to negative temperature anomalies. Right: Solid lines (red regions) represent pressure highs; dashed lines (blue regions) represent

pressure lows. Pressure highs (resp. lows) are associated with anticyclonic (resp. cyclonic) motions. (For interpretation of the references

to colour in this figure the reader is referred to the web version of this article.)

Fig. 6. Example of a Fourier-spectral element mesh used to compute the rotating Rayleigh–Bénard flow. It consists of four spectral

elements of order N = 14 in the (s,z) meridional plane coupled with K + 1 = 32 Fourier modes in longitude /. Nonlinear terms in / are

computed pseudo-spectrally on a grid of 64 points in longitude.
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pseudo-spectrally on a grid of 2(K + 1) points in longitude and no dealiasing procedure, such as the 2/3 rule

[65], was necessary for this calculation.

All original contributors to the benchmark used a spherical harmonic representation of the field varia-

bles in the horizonthal (h,/) plane, along with some form of discretization in the radial direction – finite

differences (FD) or Chebyshev polynomials. Further details on methods used by contributors can be found

in [10].

Contributors had to provide global averages as well as local data for the quasi-steady state. The former
are the mean kinetic energy ekin and the value of the drift frequency xd. The latter include the value of the

total temperature Ttot (sum of the static temperature and the temperature perturbation) and the azimuthal
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velocity u/ at a point x0 at mid-depth (r = (ri + ro)/2) in the equatorial plane (h = p/2), the longitude of

which is given by the conditions ur = 0 and opur > 0.

Results are plotted in Fig. 7, as a function of the spatial resolution, defined as the third root of the num-

ber of degrees of freedom for each scalar variable. We used Table 1 of Christensen et al. [10] to plot con-

tributors� results, and superimposed results obtained via the FSEM, which are also listed in Table 1, along
with the standard values suggested by Christensen et al. [10].
Fig. 7. Convergence of results for rotating convection calculation. Results for groups ACD, CWG, GJZ, and TMH plotted after Table

1 of [10]. For details on the methods used by these groups, see references in [10]. Results obtained by the FSEM in blue, with right

triangles. Global data on top row: mean kinetic energy ekin (left) and drift frequency xd (right). Local data on bottom row: total

temperature Ttot (left) and azimuthal velocity u/ (right). Resolution is defined as the third root of the number of degrees of freedom for

each scalar variable. (For interpretation of the references to colour in this figure the reader is referred to the web version of this article.)



Table 1

Summary of results for case 0 of numerical dynamo benchmark

ne N K Resolution ekin xd Ttot(x0) u/(x0)

1 14 31 19.3 58.2880 0.14676 0.42809 �10.1533

1 18 31 22.6 58.3518 0.18127 0.42813 �10.1580

1 22 31 25.7 58.3474 0.18235 0.42812 �10.1569

4* 14 31 30.0 58.3471 0.18230 0.42812 �10.1567

4 18 63 47.6 58.3472 0.18232 0.42811 �10.1570

Standard solution [10]: 58.348 0.1824 0.42812 �10.1571

Uncertainties: 0.05 0.005 0.00012 0.002

The last two lines indicate the standard solution to this problem, as defined in [10], along with the associated error limits. ne is the

number of elements used in the meridional plane, N is the polynomial order of the Legendre approximation, and K is the maximum

wave number used in the / direction. Due to the equatorial symmetry, calculations are performed in the upper (northern) part of the

shell only. The star indicates that results on this row were obtained using the mesh shown in Fig. 6.
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Christensen et al. [10] pointed out that the different results obtained by the contributors converge to the

same values within better than 2%. The rate of convergence being fast in the spectral (Chebyshev) case, and

slow when finite differencing is used in the radial direction.

Table 1 shows that the results obtained with the FSEM are in excellent agreement with the suggested

values (to within better than 0.05% in all cases). As seen in Fig. 7, the rate of convergence is also very sat-

isfactory, and the FSEM is in this respect equivalent to the Chebyshev-Ym
l approach. The smooth character

of the sought solution prompted us to obtain finer resolutions by increasing the polynomial order N to large

values and by keeping the total number of elements ne very small. We benefited therefore from the cluster-
ing of GLL points near the boundaries and the associated good resolution of the Ekman boundary layers.

In more chaotic, time-dependent situations, timestepping issues could however lead us to keep the polyno-

mial order low (typically between 6 and 12) and to increase ne to obtain finer resolutions.
8. Discussion – conclusion

We have presented a Fourier-spectral element model of thermal convection for a fluid filling an axisym-
metric container, in a rapidly rotating reference frame. This model, which relies heavily on the recent the-

oretical work of Bernardi et al. [5], is based upon a Fourier expansion of the field variables in the periodic

direction, and the resolution of the associated meridional problems via the spectral element method. A

Gauss–Lobatto–Jacobi (0,1) quadrature is introduced to treat those elements sharing an edge with the axis

of symmetry of the three-dimensional domain. Inside a meridional element, velocity and temperature are

approximated by polynomials of order N in each direction of space, and a slightly lower order (N � 2)

is used to discretize pressure. The resulting semi-discrete system is timestepped using a second-order

scheme, which treats both the Coriolis and viscous terms implicitly.
Two examples have illustrated the accuracy of this approach. The first one (Section 7.1), which ignored

rotation and the heat equation, was a Navier–Stokes test case taken from a recent paper by Blackburn and

Sherwin [60]: this cylindrical Kovasznay flow served to illustrate the spectral convergence properties of the

FSEM in a fully nonlinear setting, with flow crossing the axis (i.e. with energy in the k = 1 mode). These

results imply that all the singularities that arise in the cylindrical expressions of the Navier–Stokes system

are properly taken care of. In particular, the discrete decoupling strategy presented in Section 6 guarantees

that the convergence remains spectral and does not degenerate into algebraic, as could be the case if a

GLJ01 quadrature was used in a PN � PN context [60].
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Turning to geophysical considerations (Section 7.2), we then studied the rotating Rayleigh–Bénard

benchmark case in a spherical shell by Christensen et al. [10]. This problem combined all the ingredients

of the governing Eqs. (5a) and the smoothness of the sought solution prompted us to use a minimal ne
and large N to reproduce the reference solution with an excellent agreement.

The previous enthusiastic remarks praising spectral vs. algebraic convergence have to be confronted with
practical considerations: when dealing with a nonlinear, unsteady problem (highly supercritical convection

for instance), a high enough resolution is needed, which has a drastic influence on the timestep size Dt. The
explicit treatment of nonlinearities implies indeed that Dt cannot exceed a value which is proportional to the

smallest distance h between two grid points. In our case, the clustering of the GLL and GLJ01 points near

the element boundaries is such that the meridional minimal grid spacing hmed is proportional to 1/(neN
2).

Fig. 8 shows the minimal grid spacing hmed for the mesh of Fig. 6 (consisting of four spectral elements) for

different values of N, along with the overall h that results from the use of a Fourier grid of 64 equidistant

points in longitude. We observe that in this case hmed 	 5.70h.
This follows from the clustering of points in the polar regions, which is the root of the so-called pole

problem [23, Section 18.10]. This might not be so crucial for our purposes, since calculations at large C

for which this model is ultimately aimed require to resolve very thin Ekman boundary layers in the merid-

ional plane. For larger and larger Coriolis numbers, the increase in meridional resolution is likely to out-

weigh the increase in K, and therefore hmed should be closer to h. In a strongly nonlinear context, one

should anyhow use a constant (moderate) value of N (on the order of 10) and refine the resolution by

increasing ne, which allows for the model to be run on more processors. As far as performances are con-

cerned, let us stress that the current version of the code has yet to be optimized (at the serial and parallel
levels), following for instance the precepts of Deville et al. [48, chapter 8]. This task has been recently ini-

tiated, now that the model is anchored on robust (accurate) foundations. In particular, we wish to develop a

new preconditioner for the modified Helmholtz operator (63) which, unlike the diagonal preconditioner,

does not restrict the timestep to a fraction of C�1 (a fraction of x�1 if one restores dimensions).

The FSEM has an overall complexity of OðKneN 3Þ, and a complexity per processor of OðKneN 3=npÞ, if np
denotes the number of processors. It is fundamental to obtain good scaling performances and even more
Fig. 8. Minimal grid spacing h for a three-dimensional mesh of the northern hemisphere of a spherical shell consisting of four spectral

elements of varying polynomial order N. The Fourier grid has 64 equally spaced points in longitude. Also indicated is the minimal grid

spacing in the meridional plane hmed. Both decrease as N�2, as indicated by the dashed line, and are proportional: hmed 	 5.70h. Note

that the points for N = 14 (log N 	 1.15) correspond to the mesh depicted in Fig. 6.
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efficient solvers for this approach to allow to tackle challenging problems in planetary dynamics. An already

very positive news in this respect is that the FSEM does not require a lot of memory, thanks to the problem

reduction in longitude and the tensorized formulation, which preserves us from storing large matrices.

We cannot claim at this stage that the FSEM is definitely advantageous with respect to a fully three-

dimensional SEM, which is an appealing alternative to simulate the problem of interest here, especially
when the number of Fourier modes becomes large. We can stress, however, that the Fourier expansion

in longitude greatly simplifies the implementation because of the dimension reduction. In particular,

the overlapping Schwarz method is much easier to implement in two dimensions than it is in three dimen-

sions [39].

To conclude, let us emphasize that the excellent agreement obtained for the rapidly rotating Rayleigh–

Bénard flow is the first of the kind obtained by a method which does not rely on spherical harmonics and it

is truly encouraging for future planetary applications of the model. These include the study of flows driven

by precession [66,16,67], for which it is particularly important to take the ellipticity of the planet into ac-
count. The Fourier-spectral element approach is well suited for this application, as the shape of the merid-

ional domain X is arbitrary. Also, as stated in the introduction, another very interesting and related

application lies in the modelling of the dynamo process at work for instance in the Earth�s outer core.

The main difference between the Navier–Stokes equation and the so-called induction equation which gov-

erns the evolution of the magnetic field lies in the boundary conditions. On the outer boundary of the re-

gion filled by the convecting metallic liquid, the magnetic field has to be connected with an exterior

potential field. This connection is straightforward if one is using spherical harmonics [6] but less amenable

to a local method like ours. We are currently investigating this issue.
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Appendix A. Local form of stiffness matrices – singularity removal

We provide here a detailed description of the implementation of the elementary scalar and vectorial

stiffness matrices Ke
k and Ke

k. The case of an element not in contact with C is standard: GLL quadrature

is used in the two directions of space and no singularity has to be removed. We will therefore restrict our

attention on the axial element case. The local representation of a scalar field T in such an element e takes

the form
T jXeðseðn; gÞ; zeðn; gÞÞ ¼
XN
i¼0

XN
j¼0

Te
ijl

N
i ðnÞhNj ðgÞ; ðA:1Þ
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where the lNi and hNj are the Lagrangian interpolants defined over the GLJ01 and GLL points of order N,

respectively (we will omit the superscript N in what follows). Applying Ke
k to Te means evaluating (see the

definition of ak in Eq. (42))
ðKe
k � TeÞi0j0 ¼ ðKe

0 � TeÞi0j0 þ k2ðMe
s � TeÞi0j0
where
ðKe
0 � T

eÞi0j0 ¼
XN
i¼0

XN
j¼0

Te
ij

Z
Xe

os li0hj0

 �

os lihj

 �

þ oz li0hj0

 �

oz lihj

 �� �

dXe ðA:2Þ
and
ðMe
s � TeÞi0j0 ¼

XN
i¼0

XN
j¼0

Te
ij

Z
Xe

li0hj0

s
lihj
s

dXe: ðA:3Þ
Each of these integrals is computed in the parent element K2. For instance, the first term on the right-

hand side of (A.2) gives rise to
Z
Xe

os li0hj0

 �

os lihj

 �

dXe ¼
Z
K2

ðogzeon � onzeogÞ li0hj0

 �

ðogzeon � onzeogÞ lihj

 �

jJej�1ðn; gÞse dn dg

¼
Z
K2

ogzel
0
i0hj0 � onzeli0h

0
j0

� �
ogzel

0
ihj � onzelih

0
j

� �
jJej�1ðn; gÞse dn dg: ðA:4Þ
Each of the four terms involved in this sum is computed using the quadrature rules described in para-

graph (5.2.2). When developing the product in Eq. (A.4), one gets for instance a term which is
Z
K2

ðogzeÞ2l0i0hj0l0ihjjJej�1ðn; gÞse dn dg

¼
XN
p¼0

XN
q¼0

rpqql
0
i0 ðfpÞl0iðfpÞhj0 ðnqÞhjðnqÞ

seðfp; nqÞ
1þ fp

jJej�1ðfp; nqÞðogzeðfp; nqÞÞ2

¼ qjdjj0
XN
p¼0

rpl
0
i0 ðfpÞl0iðfpÞ

seðfp; njÞ
1þ fp

jJej�1ðfp; njÞðogzeðfp; njÞÞ2:
When p = 0, r0 = �1 (or equivalently s = 0): the singularity in the term
seðfp ;njÞ
1þfp

is removed by applying

L�Hospital rule and replacing this term by ons
e(n = �1,g = nj), a quantity which is derived from the knowl-

edge of the mappingFe. The same logic applies to each term in Eq. (A.4) above, and, more generally, to the

second part of the right-hand side of (A.2), which we expand here for the sake of completeness:
Z
Xe

oz li0hj0

 �

oz lihj

 �

dXe ¼
Z
K2

ð�ogseon þ onseogÞ li0hj0

 �

ð�ogseon þ onseogÞ lihj

 �

jJej�1ðn; gÞse dn dg

¼
Z
K2

�ogsel
0
i0hj0 þ onseli0h

0
j0

� �
�ogsel

0
ihj þ onselih

0
j

� �
jJej�1ðn; gÞse dn dg:
Expressions for the derivatives h 0 can be found for instance in [48, p. 462]. Expressions for the less usual

derivatives l 0 can be found in [45, Appendix C]. Note that the actual cost of the total calculation Ke
0 � T

e goes

like N3 instead of the expected N4 thanks to the tensorized formulation and associated partial summation

technique – see for instance Boyd [23, p. 184].

Let us now turn our attention to Me
s in Eq. (A.3), which is of interest for k > 0 only. The associated axial

condition is that T must vanish on C. A mask array is therefore applied prior to the calculation of
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ðMe
s � T

eÞi0j0 to ensure that T e
0j ¼ 0 for all j. For the same reason the result of this operation needs to be eval-

uated for i 0 > 0 only (a subsequent application of the same mask array sets the axial values to zero anyway).

A straightforward development of Eq. (A.3) then leads to
ðMe
s � TeÞi0j0 ¼ qj0

XN
i¼1

Te
ij0

XN
p¼0

rp
liðfpÞ

seðfp; nj0 Þ
li0 ðfpÞ

seðfp; nj0 Þ
seðfp; nj0 Þ
1þ fp

jJejðFeðfp; nj0 ÞÞ: ðA:5Þ
The result of Me
s � T

e is the sum of two contributions, ðMe
s � T

eÞ1 þ ðMe
s � T

eÞ2. If p 6¼ 0 in (A.5), there is no

singularity and one gets the first term:
ðMe
s � T

eÞ1i0j0 ¼ ri0qj0T
e
i0j0

1

1þ fi0
1

seðfi0 ; nj0 Þ
jJejðFeðfi0 ; nj0 ÞÞ: ðA:6Þ
On the other hand, if p = 0, the application of L�Hospital rule gives rise to the second contribution which

includes non-diagonal terms:
ðMe
s � TeÞ2i0j0 ¼ r0Re

i0j0qj0
seðf0; nj0 Þ
1þ f0

jJejðFeðf0; nj0 ÞÞ
XN
i¼1

Te
ij0R

e
ij0 ; ðA:7Þ
in which Re
ij0 ¼ l0iðf0Þ

1þf0
seðf0;nj0 Þ

. Again, terms of the form
seðf0;njÞ
1þf0

are practically replaced in the implementation

by the quantity ons
e(n = f0,g = nj) whose exact expression depends on the chosen mapping Fe (analytical or

sub-parametric).

As far as the elementary vectorial stiffness matrix Ke
k is concerned, one can show that it is of the form
Ke
k ¼

Ke
0 þ ð1þ k2ÞMe

s 2ikMe
s 0

�2ikMe
s Ke

0 þ ð1þ k2ÞMe
s 0

0 0 Ke
k

2
64

3
75; ðA:8Þ
and its implementation follows the lines of the scalar case detailed above.
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